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Abstract. The regular perturbation method for the smng-coupling bipolaron is developed 
systematically. The ground-state energy of a bipolaron is calculated by the variational method 
as a function of the Fr8hlich coupling constants a and q, the ratio of the optic to the static 
dielectric constant It is found that h e  bipolaron b stable in a broad region of q. The estimated 
upper bound of q turns out to be 0.165. 

1. Introduction 

The idea of the bipolaron appears to have been mooted in 1951 by P e h  [I] who at that 
time conjectured that the formation of the bipolaron was energetically unfavourable. This 
conclusion has since been proved wrong by several workers (2-121. In 1961, Vinetskii and 
Gitterman (21 reconsidered the problem and were the first to claim that the formation of the 
bipolaron was possible only in a suitable lattice environment. Since then the study of the 
bipolaron has continued to remain the focus of attention from both academic interest and 
technological importance viewpoints. Anderson [I31 first advocated the bipolaron concept in  
‘negative4 centres’ to study the electronic properties of amorphous semiconductors. Lakkis 
ef a1 [14] proposed an intersite bipolaron to explain some properties of Tido,. Recently it 
has attracted much attention because some workers [ 15-18] have conceived the idea that the 
bipolaron may be a possible candidate for explaining high-T, superconductivity. However, 
all these propositions primarily demand the feasibility of the bipolaronic complex. 

In this paper we shall consider the question of the first-principles existence of the 
bipolaron in a material medium from an ab-initio calculation. In such a study, one needs 
in the simplified case a Hamiltonian of two electrons, in the low-lying conduction band 
of a polar crystal, interacting with the lattice modes. The only such available Hamiltonian 
appears to have been obtained from the usual polaron Hamiltonian by introducing a second 
electron and its interaction with its environment. Regarding the question of the stability 
of the Frohlich bipolaron a general consensus, however, seems to be lacking; the majority 
of workers have maintained that a Frbhlich bipolaron can indeed exist in polar crystals, 
provided that certain conditions are satisfied by the material parameters. In the present 
paper we have studied the formation and stability of the Frohlich bipolaron on the basis 
of this standard Hamiltonian in the strong-coupling limit using the well known variational 
technique in combination with the RayleighSchrodinger perturbation theory (RSFT). We 
first make a canonical transformation through the well known Lee-Low-Fines (UP) [19] 
technique [20] in order to reduce it to a suitable form for use later in this paper. The 
reduced Hamiltonian is then split into an unperturbed Hamiltonian HO having a definable 
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basis and the remainder ZfhL as a perturbation. In the following we carry out the Rayleigh- 
Schriidinger perturbation procedure up to the desired order and then apply the variational 
principle to obtain the upper bound to the ground-state energy of the Frohlich bipolaron. It 
will be seen that the energy calculated in this way to the first order in flint is essentially the 
Landau-Pekar (LP) variational result [7,81. However, the LP approximation does not take 
into account the remainder term which is the difference between the actual Hamiltonian and 
the effective Hamiltonian corresponding to the Pekar m a t z .  We have taken care of this 
remainder term through the RSFT in the present approach to the bipolaron problem. The 
remainder term which is neglected in the LP approximation in the language of our paper can 
be treated as a small parameter governing the perturbation expansion. It is seen that in the 
second-order RSPT all the negative second-order corrections, however small they may be, 
added to the first-order result produce a better stability criterion than do the LP variational 
result and others 12-12], Corrections have been limited to the second order in Hint for the 
purpose of the present paper. 

2. Formulation 

The standard Hamiltonian for two electrons interacting with the optical modes in a polar 
lattice is given by (in Frohlich units) 

where 

I.L = k / ( l  - q )  q =.%/E.  (1b) 

E, and E are the high frequency and the static dielectric constants, respectively, V is 
the volume and or is the usual Frohlich coupling constant. The Hamiltonian given by 
equation ( 1 )  can be written as 

I? = hi + hz + hi2 + hi;) (2) 

where 

hz = bibq 
P 
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The Hamiltonian fi is now reduced by a standard canonical transformation [20] for use 

( 3 )  

later in the paper, which leads to 

fi + H = exp(-S)fi exp s 

and 

e9, = (Plt9,lP) f = 1.2. (3b) 

The averaging function is IP) to be defined presently. The transformed Hamiltonian H is 
now given by 

(4)  H = h r )  + h? + h!;) + h$) 

where 

It turns out that the transformed Hamiltonian retains the structure of the original Hamiltonian 
(fi = hl +h2+h12+hiT) changing, however, the individual components. Thus hl becomes 
hi') which acquires an extra potential term entirely due to the coupling of the two systems 
and which is furthermore explicitly attractive. This must then be at the cost of the interaction 
h12 which in the new form hyi may be seen to be less effective than hlz .  As a result we 
obtain an effective Hamiltonian Ha = h y )  + h2 + hi;) which already contains much of the 
phonon-induced interaction and h!:) is the exact remainder term. This method [20] may be 
iterated to any desired order. Finally there still remains a residual interaction term which 
can now be treated by a suitable conventional method. 

Our approach is essentially directed at repartitioning of the exact Hamiltonian H into 
an unperturbed Hamiltonian Ho and a perturbation Hi, such that HO admits a basis. This 
is arrived at in such a way that in the lowest order one obtains the LP variational result [7] 
and then the next higher-order contribution leads to a better stability criterion. 

For a single polaron the LP approximation in its simplest form implies replacing 
the induced potential by an effective potential (which corresponds to the variational 
wavefunction) in the electronic equation. Such an effective wavefunction [21] method 
is known to have provided very good results for the strong-coupling polaron. Following 
this we repartition the Hamiltonian (4) as follows: 

H = Ho + Hint (5 )  

where 
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and 

2 2  

H@) = 
i=I j=l  q 

(54 

The motivation behind the partition of the Hamiltonian and the inclusion of an effective 
potential, as described above, is to find an appropriate basis for the perturbative calculation. 
With a particular choice of the effective potential the basis of HO then becomes 

$k"(Tl. 7.2,. . ., uq, . . .) = Pkh. T?)X(.  . . u q , .  .) (6) 

where q,.(rl, r2) is the kth eigenstate of -V:, - 0; + Ve~(q, p.2) and x(. . . u p .  . .) is the 
general eigenstate of E, bib,. The ground state of Ho is given by 

Ig, 0) = ~ g ( ~ 1  TZ)X (0) bqX (0) = 0. 0 

We now choose the averaging function in equation (3b) to be P~(T~,T~). Then a 
systematic RSPT in different order gives the following: 

zero order: E(" = (g. OIHolg, 0) 
(8) 

= (g ld  + P: + &f(TIv T2)lg)  

k E!Sl - k Eg,o - Ek.1 
+ 

where the prime in the summation indicates that [k) # lg) and H(') does not enter into the 
final expression of E") because of the orthogonality of the ground-state and excited-state 
wavefunctions. 
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3. Results and discussion 

For an explicit calculation of the perturbative result we choose the effective potential 

Vee(rl, 5-2) = A4r: + A4r; + 2p4r l  . 5-2 ( 1 1 )  

such that it accounts for the correlated motion the two electrons in the bipolaronic complex. 
Moreover this choice of the effective potential does not destroy the generality of the system 
in any way because this term is only added and subtracted from the actual Hamiltonian in 
order to repartition this Hamiltonian for a convenient perturbative calculation. 

Now the perturbative calculation is easily accomplished by introducing the new variables 

(12) c = (5- + 5-2) /1 /2 y = (5-1 - r z ) / . / 2 .  

In the new representation 

Ilew(5-1, 5-2) = A f t 2  + 1:~' (13) 

where 

1: = A4 + o4 and ,X4 2 -  - A 4 - @ ;  

HQ = (P: + A:!?) + (p: + 1:~') + bibq. 
P 

The basis of HO is then given by 

Coij(2'3 V )  = Oi(C)Oj(Y) (16) 

where $ t i ( < )  is the excited state of p:+A;C2 and q5i(y) is the jth excited state of p: +$y2.  
With the corresponding basis the perturbation result up to first order gives 

where 

t = 1 2 / 1 1 .  

The variational principle demands that 

aE/a,xl = o a q a t  = o 

and 
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Solving (19) and (20) for A t  and f we obtain the energy of the bipolaron as a function of a2 
and q. The result obtained here by canonical transformation followed by first-order RSPT is 
identical with what one would obtain by LP variational treatment. Now we need to examine 
the stability criterion for the formation of the bipolaron which is 

E -2Ep < O  

where Ep(=  -d/3n) is the energy of a single polaron calculated in the same procedure. 
The abovamentioned condition thus leads to the desired criterion, namely that, for 
q c qc(= 0.08), the bipolaron is stable which compares well with the other values of 
qc reported in the literalure [&SI. However, for p = 0 we obtain [9] 

and 

E - 2 E p = -  @ (  -- I 1) 
3n 1 - 9  

where q = &#/E  is always less than unity. It therefore follows that the energy of the 
bipolaron (for the p = 0 case) to the first order aIways lies above the energy of the two 
independent polarons. This is the Pekar [ 11 case and the bipolaron formation is not favoured 
to this order of approximation. This negative result of Pekar occurs because no correlation 
is taken into account between the electrons in the bipolaronic wavefunction. Thus we 
are inclined to include that the effect through a systematic perturbation theory with an 
appropriate choice of the effective potential which takes care of the appropriate interaction 
between the electrons in the bipolaronic complex and we see that our choice of the effective 
potential (ues(rL, r 2 )  = A4r: + A4rl + 2 p r 1  . r 2 )  represents the formation of a bipolaron in 
the first order whereas in the Pekar case ueff(rt, r z )  = h4r:+ h4r:, which does not take into 
account any interaction between the electrons in the first order of the approximation and no 
formation of a bipolaron occurs in the P e h  approach. The crux of this contention is that 
the LP approximation in the language of the present paper, which includes only first-order 
effects, may not be regarded as the final criterion of stability or instability. Higher-order 
corrections may enhance the stability criterion which we shall presently see. 

The second-order correction to the first-order result (equation (17)) is given by 
equation (10). Evaluating all the matrix elements we finally obtain 

where 
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and 

Equation (23) together with (17) will give the bipolaron energy in the second order of 
approximation. Appropriate variations have been made in the strong-coupling limit in order 
to obtain the ground-state energy of the bipolaron in the second-order RSm which may be 
found in the following form: 

EBP = E(') + E(') f E r )  + c + o(l/LY*) (26) 

where 

In the limit of the localized state solution, A1 and t in the second order of approximation 
are also given by equations (19) and (20). The contributions to the bipolaron energy from 
successive orders of approximation are shown in table 1. It is found that the second-order 
contribution, however small it may be, enhances the stability of the bipolaronic complex. 
We have calcdated the binding energy of the bipolaron given by B B ~  = 2& - EBp where 
g p  is the energy of a single polaron calculated in the framework of the same method in 
order to obtain the stability criterion for the formation of the bipolaron. In this order of 
approximation, I% turns out to be given by 

8, = -0 .1077~~~+31n2.  (28) 

Table 1. Successive contributions to the energy ofthe bipolaron obtained in the successive orders 
of approximation in our permrbative approach based on the RSPT and variational method: E @ ) ,  
energy of the bipolaron in Lhe mth-order @dative cakulwibn; Ell). hm'-& p " t i i . a  
correction to the bipolaron energy, E('), second-order perhlrbative correction to the bipolaron 
energy; EBP, energy of the bipolaron in the secondader permrbative calculation. 

9 E") E(1) E(') EEP 

0.00 0.2435cif -0.4811~~ -0.02910r' -0 .2121~~ 
0.05 0.2238~' -0.4476a2 -0.0322~~~ -0.2560~' 
0.10 0.2031~' -0.4062~~' -0.0358~' -0,23890' 
0.15 0 . 1 8 1 5 ~ ~  -0.36310~ -0.04112 -0.2227~1~ 

The stability criterion has been obtained by demanding that BBP is positive and we find 
a value of 0 = vc = 0.165, below which this desired stability condition is satisfied. For 
the ,3 = 0 case this result becomes worse. rl. becomes of the order of 0.10. However, this 
result is quite impressive in the sense that we can overcome P e w s  [l] negative argument 
in this approach. Using the same Pekar wavefunction we can go beyond Pekar's result 
through a systematic perturbation procedure. 
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It is now worth noting that the required constraint on q is very liberal compared with the 
other results reported in the literature. Suprun and Moizhes [3] using Pekar-type products 
of one electron wavefunctions with built-in correlation factors obtained qc = 0.14, which 
was much later obtained by Adamowskii [5 ]  in the strong-coupling Limit. Si1 and co- 
workers [SI, by introducing simple correlation factors, have recently obtained an nc value 
of 0.132. The path integral calculation of Hramoto and Toyoza [4] yielded an n, value 
of 0.079, also obtained otherwise by Bassani et at [7]. Devreese and co-workers [6] in 
a recent work obtain an upper bound of q = 0.131 for a large value of 01. Recently we 
[I21 have obtained qc = 0.14 in a variational calculation using the concept of a two-centre 
bipolaron [Z]. The common feature of all these works is the estimate of qc below which 
the bipolaron is stable. It is seen that the region of the bipolaron stability obtained by the 
present method is much broader than those of others [2-121. Our approach is close to that 
of Pekar with additional interaction extracted from the remainder term. Correlation need 
not be introduced artificially in this approach, as it is built into the formalism. As for the 
energy of the bipolaron, although it has been shown that the strongly coupled bipolaron 
energy is proportional to a*, the complete numerical value has not been reported [5-91 so 
far. In table 2 we compare the binding energy of the bipolaron with the other result [7] 
available in the literature. 

Table 2. Comparison of &e binding energy q in the present calculation with the binding energy 
(BE) from B a s d  et 01 [7]: BE], binding energy of the bipolaron in the first-order pclturbative 
calculatim:  BE^, binding energy of the bipolaron in he second-der pertuhative calculation. 

0.WO 0.031401~ 0.0314~~~ 0.0572cr2 
0.035 0.017701~ 0.017701~ 0.M56u1 
0.070 0.003501’ 0.0035s’ 0.0338~~~ 

In conclusion the present paper supplies theoretical support in favour of the formation of 
the optical bipolaron in a material medium We have shown in this paper that, through the 
inclusion of interaction beyond the LP approximation, a condition for the optical bipolaron 
exists. Higher approximations are made through a regular perturbation procedure. First- 
order correction essentially gives the stability criterion which is otherwise obtained by the 
LP variational method. Second-order correction considerably improves that result. Higher- 
order corrections are only likely to strengthen these conclusions. 
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